

TWO NOVEL HEXACYCLIC TRITERPENOIDS FROM *PRUNELLA VULGARIS**

HISASHI KOJIMA, HIDEO TOMINAGA,† SHIGEKI SATO,† HIROAKI TAKAYANAGI,‡ and HARUO OGURA‡

Medicinal Plant Garden, School of Pharmaceutical Sciences, Kitasato University Sagamihara, Kanagawa 228, Japan; †JPS Pharmaceutical Co. Ltd, Miyamae-Ku, Kawasaki 213, Japan; ‡School of Pharmaceutical Sciences, Kitasato University, Minato-Ku, Tokyo 108, Japan

(Received 16 November 1987)

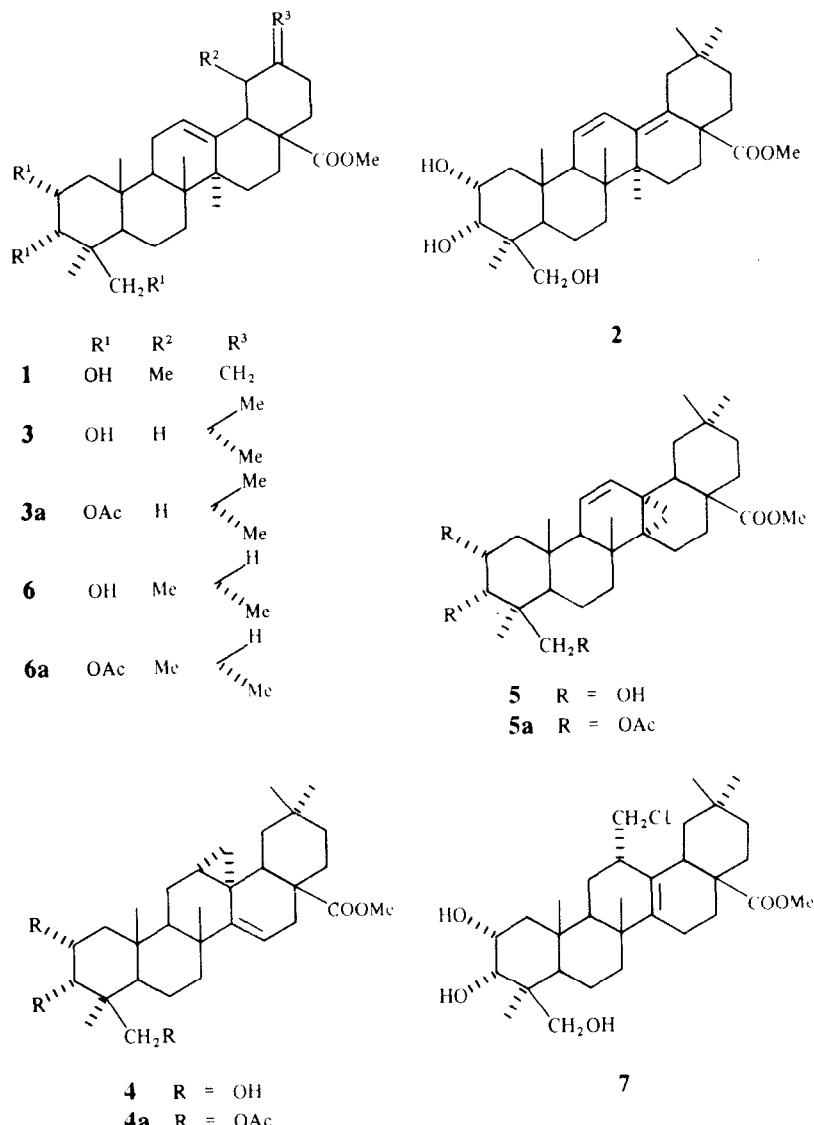
Key Word Index—*Prunella vulgaris*; Labiate; triterpenoids; (12R, 13S)-2 α ,3 α ,24-trihydroxy-12,13-cyclo-taraxer-14-en-28-oic acid; (13S,14R)-2 α ,3 α ,24-trihydroxy-13,14-cyclo-olean-11-en-28-oic acid.

Abstract—Two new hexacyclic triterpenoids, isolated as their methyl esters from the roots of *Prunella vulgaris*, were established by spectroscopic evidence and chemical correlation to be (12R,13S)-2 α ,3 α ,24-trihydroxy-12,13-cyclo-taraxer-14-en-28-oic acid and (13S,14R)-2 α ,3 α ,24-trihydroxy-13,14-cyclo-olean-11-en-28-oic acid.

INTRODUCTION

We previously reported [1, 2] the structure determination of 13 pentacyclic triterpenes obtained as their methyl esters from *Prunella vulgaris* L. var. *lilacina* Nakai. Four of them were novel triterpenes, methyl 2 α ,3 α ,24-trihydroxyurs-12,20(30)-dien-28-oate, methyl 2 α ,3 α ,24-trihydroxyurs-12,20(30)-dien-28-oate(1), methyl 2 α ,3 α ,24-oleana-11,13(18)-dien-28-oate (2) and methyl 2 α ,3 α ,24-trihydroxyolean-12-en-28-oate (3), which were isolated together with some minor components by repeated preparative reversed-phase high performance liquid chromatography. In a continuation of that work, the two minor compounds have been identified as methyl (12R, 13S)-2 α ,3 α ,24-trihydroxy-12,13-cyclo-taraxer-14-en-28-oate (4) and methyl (13S,14R)-2 α ,3 α ,24-trihydroxy-13,14-cyclo-olean-11-en-28-oate (5), respectively.

RESULTS AND DISCUSSION


The minor compounds 4 and 5 were effectively purified from the other four compounds 1-3 and methyl 2 α ,3 α ,24-trihydroxyurs-12-en-28-oate (6) by extensive HPLC of their trihydroxyl and triacetoxyl derivatives, respectively, using two mobile phases. The retention times of 4 and 5 were identical and were between those of the diene group (1 and 2) and the monoene group (3 and 6). The acetoxyl derivative 5a behaved in a similar manner, however 4a had a longer retention time than 3a and consequently compound 4 was expected to have a unique structure.

The molecular formulae $C_{31}H_{48}O_5$ of both compounds 4 and 5 were identical with those of 1 and 2, and had two hydrogens less than those of 3 and 6. A signal at m/z 239[M - retro-Diels-Alder fragment - H]⁺ found in the mass spectra of 1, 2, 3 and 6 indicated that the A/B rings have the same structure. In fact, the ¹H NMR spectra of 4 and 5 (or 4a and 5a, see Table 1) showed the

signals of four protons on the hydroxyl (or acetoxyl)-bearing carbons which were very similar to those of 3 (or 3a) [2], revealing that they have the same substitution pattern. The differences were the presence of five tertiary methyl groups in the former, one less than in the latter and the appearance of double doublets at δ -0.09 (in 4) and a doublet at 0.32 (in 5), which absorbed at higher field than their methyl signals thus indicating a cyclopropane ring. The IR spectrum (ν 3067 cm^{-1}) [3] of 4 supported the presence of a cyclopropane ring. The ¹³C NMR spectra of 4 and 4a suggested the location of the cyclopropane ring. Chemical shift differences between 3 and 4 were 90.4-120.7 ppm for C-12, C-13, C-14 and C-15, 4.6-14.5 ppm for C-7, C-16, C-18, C-19, C-26 and C-27, and less than 4.5 ppm for other carbons. These data, together with the mass spectral fragment ion described above, inferred that 4 differed from 3 only in the ring C and D region. Furthermore, the ¹H NMR (except for carbonyl region) and UV (λ_{max} 214 nm) spectra of 4 showed a marked resemblance to those of cyclosenegin[4]. Since it was known to undergo a vinylcyclopropane-homoallyl rearrangement, 4 was heated with 6 N hydrochloric acid in ethanol to afford the chloro derivative(7), whose ¹H NMR spectrum was again similar to that of senegenin[5, 6]. Thus the cyclopropane ring in 4 was likely to be fused to the C(12)-C(13) position of a nor-oleanane carbon skeleton.

In order to verify the above deduction, homo- and hetero-nuclear two dimension spectra were measured. These data resolved the cross-peaks corresponding to the coupling between 12-H and the geminal 27A-H and 27B-H, 15-H and 16-H₂, 18-H and 19-H₂, etc., together with the long-range coupling of 1 β -H and 3 β -H, 1 α -H and 25-H₃, and 24-H₂ and 23-H₃. The unusual high field signal at δ -0.09 was thus due to 27A-H, which suffered for steric reasons the shielding effect of the C(14)-C(15) double bond. Though the 27B-H signal was overlapped with those of 25-H₃, 26-H₃, 29-H₃, 9-H and 19 α -H, its coupling pattern was determined as δ 0.86 (dd, J_{12} = 9.0 Hz, J_{27A} = 4.5 Hz) by using *J*-resolved 2D NMR of 4. Furthermore, the equatorial 19 β -H (δ 0.64) and axial 9-

*Part 3 in the series 'Constituents of the Labiate Plants'. For Part 2 see ref.[2].

H appeared at higher field than the axial 19 α -H and 5-H, respectively, and than the same protons of **3** (Δ^{δ} H: 0.8~0.9 ppm) probably due to their location (above and below the plane of the cyclopropane ring). This assumption was also supported by presence of **4** and 8% NOEs between 9-H and 27A-H, and 27A-H and 27B-H signals, respectively (indicated by arrows in Fig. 1). From these spectral data, the configuration of the cyclopropane ring was concluded to be *cis* to 9-H. Therefore, the compound **4** should be named methyl (12*R*,13*S*)-2 α ,3 α ,24-trihydroxy-12,13-cyclo-taraxer-14-en-28-oate. Phyllanthol, the first naturally occurring hexacyclic triterpene containing a cyclopropane ring reported by Barton *et al.* [7] possesses a modified ursane carbon skeleton.

The UV spectrum (λ_{max} 216 nm) of compound **5** was indicated the presence of a vinylcyclopropane. At the same time, two two-proton doublets (δ 0.35 and 1.08, J = 5 Hz) of a cyclopropyl methylene and the vicinal coupling of two vinylic protons (δ 5.14 and 5.84, J = 11 Hz) were observed in the ¹H NMR spectrum of **5a**. Moreover, chemical shift differences of the ¹³C NMR

spectra between **3** and **5** were 113.7~114.3 ppm for C-11 and C-13, 4.8~12.7 ppm for C-8, C-9, C-18, C-19 and C-27, and less than 4.1 ppm for other carbons, and between **4** and **5** were 94.4~127.1 ppm for C-11, C-12, C-14 and C-15, 5.4~12.6 ppm for C-9, C-13, C-16, C-17, C-19 and C-26, and less than 4.2 ppm for others. In particular the C-9

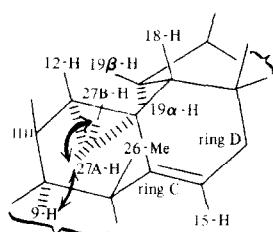

Partial structure of compound **4**

Fig. 1.

Table 1. ^1H NMR spectral data of compounds **4**, **4a**, **5**, **5a** and **7** (CDCl_3)

Assignments	4	4a*	5	5a*	7
H-2 β	4.00ddd (12, 5, 3)	5.19ddd (12, 5, 3)	4.13ddd (12, 5, 3)	5.21ddd (12, 5, 3)	4.02m (21)
H-3 β	3.86d (3)	5.32d (3)	3.86d (3)	5.31d (3)	3.85d (2)
H-11			5.82dd (10, 3)	5.84dd (11, 3)	
H-12			5.17dd (10, 2.5)	5.14dd (11, 2.5)	2.35m (20)
H-15	5.55dd (8, 4)	5.58dd (8, 4)			2.18ddd (22, 11, 3)
H-16 α	2.36ddd (14, 8, 1)	2.38dd (14, 8)			
H-18	2.60dd (14, 4)	2.61dd (14, 4)	2.66dd (13, 4)	2.68dd (13, 4)	2.43dd (13, 4)
H-19 β	0.64dd (14, 4)	0.63dd (14, 4)			
3H-23	1.13s	0.94s	1.13s	0.94s	1.13s
H _A and H _B	3.51d (11)	4.04d (11)	3.52d (11)	4.07d (11)	3.57d (11)
(or 3H)-24	3.70d (11)	4.17d (11)	3.66d (11)	4.16d (11)	3.67d (11)
3H-25	0.87s	1.01s	0.88s	0.99s	0.86s
3H-26	0.91s	0.88s	0.63s	0.66s	0.83s
H _A and H _B	-0.09dd (6, 4.5)	-0.09t (4.5)	0.32d (5)	0.35d (5)	3.37t (11)
-27	0.86dd (9, 4.5)		1.06	1.08d (5)	3.75dd (11, 3)
3H-29	0.89s	0.88s	0.91s	0.92s	0.91s
3H-30	0.90s	0.88s	0.94s	0.95s	1.01s
OMe	3.60s	3.60s	3.62s	3.65s	3.58s
OAc	—	1.95s	—	1.97s	—
		2.08s		2.09s	
		2.08s		2.12s	

* Measured at 300 MHz; the rest at 400 MHz.

— Indicates no signal. The figures in parentheses are coupling constants in Hz except for $W_{1/2}$ values in m.

signal was shifted downfield ($\Delta\delta\text{C}$: both 5.6 ppm) by comparison to the same signals of **3** and **4**, respectively, because it suffered the deshielding effect of the C(11)-C(12) double bond. Therefore, the cyclopropane ring was considered to be in the C(13)-C(14) position. These assignments were performed by comparison of the proton-proton and proton-carbon 2D NMR spectra data of **5** and **5a** with those of **3** and **4**, and their acetates **3a** and **4a**. It was very easy to identify the cross-peaks corresponding to the coupling between 27A-H and 27B-H, 18-H and 19-H₂, 9-H and 11-H, 11-H and 12-H, 1 β -H and 3 β -H (long-range coupling), etc. The coupling pattern of 18-H and 19-H₂ in **5** was similar to that of **3** and not so strange as that of **4**. Besides the above data, the configuration of the cyclopropane ring in **5** was suggested to be the same as **4** (*cis* to 9-H) by their biosynthetic relationship along with the oxidation and rearrangement of the C-27 methyl residue of an oleanene triterpene [6]. Therefore, compound **5** could be elucidated as an isomer of **4**, which had the cyclopropane ring located on the same position as that of phyllanthol [7]. Accordingly, it was

named methyl (13*S*, 14*R*)-2 α ,3 α ,24-trihydroxy-13,14-cyclo-olean-11-en-28-oate.

EXPERIMENTAL

Mps: uncorr; TLC, IR, UV, MS. ^1H NMR, ^{13}C NMR, HPLC (except for mobile phase and flow rate), plant, extraction and isolation: see refs [1, 2].

*Isolation of compounds **4** and **5** by HPLC.* Each fraction contained minor compounds **4a** (29.2 min) and **5a** (26.0 min) which could be separated by HPLC [mobile phase MeCH-H₂O (87: 13); flow rate (3.6 ml/min)] but the former fraction was a mixture of **3a**, **4a** and **6a** and the latter was a mixture of **3a** and **5a**. They were then, respectively, hydrolysed in 5% KOH-MeOH to yield the acetyl-free compounds. Compound **4** (22.8 min) was purified from **3** (24.5 min) and **6** (25.5 min) and compound **5** (22.8 min) was separated from **3** (24.5 min) by extensive HPLC [mobile phase MeOH-H₂O (4:1); flow rate 3.5 ml/min], respectively.

*Methyl (12*R*,13*S*)-2 α ,3 α ,24-trihydroxy-12,13-cyclo-taraxer-14-en-28-oate (4).* Recrystallization (MeOH) gave 35 mg, colourless

Table 2. ^{13}C NMR spectral data of compounds **3**, **4**, **4a**, **5**, **5a** and **7**
(CDCl_3)

C	3*	4	4a*	5	5a*	7
1	41.4	41.6	38.6	41.9	38.7	41.5
2	66.2	66.3	67.8	66.2	67.5	66.5
3	73.3	73.2	72.3	73.5	72.4	73.5
4	41.4	43.9	42.0	43.9	42.0	43.9
5	48.6	48.7	50.2	48.3	49.8	48.6
6	18.2	18.2	18.0	18.4	18.0	18.4
7	32.7	38.7	38.6	36.8	36.5	38.4
8	39.3	37.1	37.0	34.1	34.0	38.9
9	47.4	47.4	47.7	53.0	52.9	51.3
10	38.0	38.0	38.1	37.5	37.5	38.0
11	23.4	19.0	19.1	137.7	137.9	20.8
12	121.9	14.9	14.7	119.9	119.3	44.9
13	141.7	23.0	23.0	30.0	29.9	143.5
14	41.6	156.0	156.1	28.9	28.9	130.3
15	27.5	117.9	118.1	23.5	23.3	20.0
16	22.9	31.8	31.9	21.4	21.3	21.1
17	46.6	52.8	52.8	45.0	44.8	46.7
18	41.1	34.7	34.6	34.7	34.5	39.1
19	45.7	35.5	35.4	40.9	40.7	42.0
20	30.6	28.7	28.7	32.9	32.9	30.8
21	33.7	33.6	33.6	34.1	34.0	33.4
22	32.2	30.4	30.4	32.9	32.8	30.6
23	22.0	22.1	22.2	22.1	22.0	22.1
24	65.5	65.4	66.0	65.3	65.8	65.5
25	16.6	17.6	17.5	18.5	18.3	17.5
26	16.6	28.9	28.9	16.3	16.2	19.1
27	25.9	11.4	11.4	15.6	15.6	47.7
28	178.2	178.1	177.9	178.1	177.9	178.0
29	33.0	32.1	32.1	32.7	32.6	32.9
30	23.5	22.6	22.6	24.3	24.1	24.9
CO_2Me	51.4	51.5	51.5	51.7	51.6	51.5
MeCO			171.0		171.1	
			170.3		170.3	
			170.1		170.1	
AcCO			20.9		20.9	
			20.8		20.8	
			20.8		20.8	

* Measured at 75.2 MHz; the rest at 100 MHz.

† The data of **3** is cited from ref.[2].

needles, mp 276–278°, $[\alpha]_D^{24} + 24.0^\circ$ (CHCl_3 ; c 0.5); HRMS m/z : 500.348[M]⁺, $\text{C}_{31}\text{H}_{48}\text{O}_5$ (required: 500.350); EIMS m/z (rel. int.): 500[M]⁺ (67), 440[M – HCOOMe]⁺ (25), 255(22), 241(27), 239(25), 213(19), 203(16), 200(100), 187(60), 133(19), 131(19); IR

ν_{max} cm^{-1} : 3545(OH) 3067(cyclopropyl C-H), 1725(CO_2Me), 1635, 823(C=CH); UV λ_{max} nm: 214 ($\log \epsilon$ 3.67). *Triacetate* (**4a**), amorphous; HRMS m/z 626.382[M]⁺, $\text{C}_{37}\text{H}_{54}\text{O}_8$ (required: 626.382); EIMS m/z (rel. int.): 626[M]⁺ (100), 566(23), 387(11), 262(6), 200(73), 187(38), 133(5), ¹H NMR: see Table 1.; ¹³C NMR: see Table 2.

Methyl (13S, 14R)-2 α ,3 α ,24-trihydroxy-13,14-cyclo-olean-11-en-28-oate (**5**). Crystallization of **5** from MeOH afforded 9 mg of colourless needles, mp > 310°, $[\alpha]_D^{24} + 21.2^\circ$ (CHCl_3 ; c 0.17); HRMS m/z : 500.349[M]⁺, $\text{C}_{31}\text{H}_{48}\text{O}_5$ (required: 500.350); EIMS m/z (rel. int.): 500[M]⁺ (28), 440[M – HCOOMe]⁺ (6), 262(100), 239(10), 203(93), 189(13), 133(5); UV λ_{max} nm: 216 ($\log \epsilon$ 3.56). *Triacetate* (**5a**) was an amorphous powder. HRMS m/z

626.382[M]⁺, $\text{C}_{37}\text{H}_{54}\text{O}_8$ (required: 626.382); EIMS m/z (rel. int.): 626[M]⁺ (100), 566[M – HCOOMe]⁺ (34), 507(29), 431(26), 371(18), 299(29), 262(33), 247(27), 239(23), 203(47), 189(35), 187(36), 133(28).

*Treatment of **4** with hydrochloric acid.* Compound **4** (15 mg) was refluxed with 6 N HCl in EtOH for 4 hr to give a residue, which was purified by HPLC [mobile phase MeOH–H₂O (92:8)] to yield **7**, *ca* 9 mg, stout needles (from MeOH), mp 152–153°, $[\alpha]_D^{25} - 4.4^\circ$ (CHCl_3 ; c 0.3); FDMS m/z : 536[M]⁺ EIMS m/z (rel. int.): 500[M – HCl]⁺ (100), 482[M – HCl – H₂O]⁺ (55), 440[M – HCl – HCOOMe]⁺ (19), 255(6), 241(7), 239(5), 200(32), 187(16). Attempted conversion of **7** to **4** by the same procedure described in ref. [4] was unsuccessful, the starting material being recovered.

Acknowledgements. We thank Mr K. Kushida (Varian Instrument Ltd) for measurement of the 300 MHz NMR spectra and

the members of Analytical Centre of Kitasato University for 400 MHz NMR spectra and mass spectra.

REFERENCES

1. Kojima, H. and Ogura, H. (1986) *Phytochemistry* **25**, 729.
2. Kojima, H., Tominaga, H., Sato, S. and Ogura, H. (1987) *Phytochemistry* **26**, 1107.
3. Cole, A. R. (1954) *J. Chem. Soc.* 3810.
4. Shimizu, Y. and Pelletier, S. W. (1966) *J. Am. Chem. Soc.* **88**, 1544.
5. Dugan, J. J., de Mayo, P. and Starrtt, A. N. (1964) *Can. J. Chem.* **42**, 491.
6. Dugan, J. J. and de Mayo, P. (1965) *Can. J. Chem.* **43**, 2033.
7. Barton, D. H. R., Page, J. E. and Warnhoff, E. W. (1954) *J. Chem. Soc.* 2715.